
The 4D Hyperspherical Diffusion Wavelet:

A New Method for the Detection of Localized
Anatomical Variation

Ameer Pasha Hosseinbor1, Won Hwa Kim1, Nagesh Adluru1, Amit Acharya2,
Houri K. Vorperian1, and Moo K. Chung1

1 University of Wisconsin-Madison, USA
2 Marshfield Clinic, USA
hosseinbor@wisc.edu

Abstract. Recently, the HyperSPHARM algorithm was proposed to pa-
rameterize multiple disjoint objects in a holistic manner using the 4D
hyperspherical harmonics. The HyperSPHARM coefficients are global;
they cannot be used to directly infer localized variations in signal. In
this paper, we present a unified wavelet framework that links Hyper-
SPHARM to the diffusion wavelet transform. Specifically, we will show
that the HyperSPHARM basis forms a subset of a wavelet-based multi-
scale representation of surface-based signals. This wavelet, termed the
hyperspherical diffusion wavelet, is a consequence of the equivalence of
isotropic heat diffusion smoothing and the diffusion wavelet transform
on the hypersphere. Our framework allows for the statistical inference of
highly localized anatomical changes, which we demonstrate in the first-
ever developmental study on the hyoid bone investigating gender and age
effects. We also show that the hyperspherical wavelet successfully picks
up group-wise differences that are barely detectable using SPHARM.

1 Introduction

Studying and quantifying the development of anatomical structures over time is
important in medical image analysis. Anatomical development tends to exhibit
highly localized, complex growth [9]. Unfortunately, existing surface-based mor-
phometric techniques are based on global bases, and thus are unable to detect
subtle localized anatomical variations. For anatomical developmental studies,
there is then a real need for surface-based approaches with localization power.

Recently, the HyperSPHARM algorithm [7] was proposed to parameterize
multiple disjoint structures (e.g. hyoid bone) in a holistic manner. The under-
lying idea behind HyperSPHARM is to stereographically project n-dimensional
data onto the (n+ 1)-dimensional hypersphere and subsequenly parameterize it
with the (n+1)-dimensional hyperspherical harmonics (HSH). As with SPHARM
[5,8], the HyperSPHARM coefficients are global, so if they exhibit statistical dif-
ferences, interpreting which anatomical regions contribute to these variations is
difficult. Consequently, the HyperSPHARM coefficients cannot be used directly
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to infer localized variations in signal. Although this fact may seem to render Hy-
perSPHARM as a purely global inference algorithm, HyperSPHARM is actually
a feature of wavelet localization.

In this paper, a unified wavelet framework is developed that links Hyper-
SPHARM to the diffusion wavelet transform [4]. Specifically, we will show that
the HyperSPHARM basis forms a subset of a wavelet-based multi-scale repre-
sentation of surface-based signals. We will derive this wavelet, which we term
the hyperspherical diffusion wavelet. Our framework allows for the statistical
inference of highly localized anatomical changes, which we demonstrate in a de-
velopmental study on the hyoid bone investigating gender and age effects. We
will also show that the hyperspherical wavelet outperforms SPHARM in detect-
ing group-wise differences.

2 Theory
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Fig. 1. NMSE versus hypersphere radius
for N=1 HSH recon of hyoid template

In this section, we will briefly review
HyperSPHARM, before deriving the
hyperspherical wavelet and its corre-
sponding coefficients.

4D Hyperspherical Harmonics
Consider the 4D unit hypersphere S3

existing in R
4. The Laplace-Beltrami

operator on S3 is defined as ΔS3 =
1

sin2 β
∂
∂β sin2 β ∂

∂β + 1
sin2 β

ΔS2 , where
ΔS2 is the Laplace-Beltrami operator
on the unit sphere S2. The eigen-
fuctions of ΔS3 are the 4D HSH
Zm
nl(β, θ, φ): ΔS3Zm

nl = −l(l + 2)Zm
nl,

and we refer the reader to [7] for their exact functional form. The hyperspherical
angles (β, θ, φ) obey (β ∈ [0, π], θ ∈ [0, π], φ ∈ [0, 2π]), and the three integers
(n, l,m) obey the conditions n = 0, 1, 2, ..., 0 ≤ l ≤ n, and −l ≤ m ≤ l. The 4D
HSH form an orthonormal basis on S3.

Isotropic Heat Diffusion Smoothing on 4D Hypersphere
Consider an arbitrary 3D manifold M ⊂ R

3 defined by surface coordinates
q = (q, θ, φ), and some real-valued functional measurement f(q) defined on the
manifold. The manifold M can be either multiple disjoint components such as
the hyoid bone, or a single connected component. We stereographically project
the 3D manifold onto a 4D hypersphere of radius ro in R

4, whose coordinates are
denoted by the vector u = (β, θ, φ). Consequently, the functional measurement f
exists along the surface of the 4D hypersphere. Note that the measurement f(q)
on M is equivalent to its corresponding projection f(u) on the hypersphere.

We assume that f(u) is square-integrable along the surface of the hyper-
sphere. According to Fourier analysis, any square-integrable function defined on
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a sphere can be expanded in terms of the spherical harmonics. Thus, f(u) can
be expanded in terms of the 4D HSH:

f(u) =

N∑

n=0

n∑

l=0

l∑

m=−l

CnlmZ
m
nl(u), (1)

where N is the truncation order of the HSH expansion. Eq. (1) is simply the
HyperSPHARM basis.

Now lets have f(u) undergo isotropic heat diffusion smoothing. We want to
determine the function K(u, t) that describes the variation of f(u) with respect
to smoothing parameter t. Naturally, when no smoothing is applied, i.e. t = 0, we
haveK(u, 0) = f(u). The functionK(u, t) is then a solution to the isotropic heat
equation on the 4D hypersphere, subject to the aforementioned initial condition:

∂

∂t
K(u, t)−ΔS3K(u, t) = 0, K(u, t = 0) = f(u) (2)

Eq. (2) can be solved analytically by employing an ansatz solution of the form

K(u, t) =
∑∞

n=0

∑n
l=0

∑l
m=−l Cnlmhnlm(t)Zm

nl(u), where hnlm(t) is the smooth-
ing term. Upon substituting the ansatz solution into (2), we determine the
smoothing term to be hl(t) = ble

−l(l+2)t. Hence, the solution to Eq. (2) is

K(u, t) =

N∑

n=0

n∑

l=0

l∑

m=−l

Cnlme
−l(l+2)tZm

nl(u), (3)

where all constants are absorbed into Cnlm.

Connection to Diffusion Wavelet
Diffusion wavelets are a multi-scale framework for the analysis of functions on
manifolds and graphs [1,6]. Consider the eigenfunctions ψj and eigenvalues λj
on an arbitrary d-dimensional manifold Md, which satisfy �ψj = λjψj for some
self-adjoint operator � defined on Md. Following the notations in [1,6], the
diffusion wavelet Wt,p(s) at position p and scale t characterizing the manifold
Md is given by

Wt,p(s) =

k∑

j=0

g(λj , t)ψj(p)ψj(s), (4)

where g is some scaling function. The diffusion wavelet coefficients of a given
function ε(s) existing on the manifold Md is given by the inner product of the
wavelets and the given function:

〈Wt,p, ε〉 =
∫

M

Wt,p(s)ε(s)ds (5)
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If the manifold Md is taken to be the 4D hypersphere, then � is the Laplace-
Beltrami operator on S3; ψj is the 4D HSH basis Zm

nl ; and λj = −l(l+2). Then
Eq. (4) becomes

Wt,u(v) =

N∑

n=0

n∑

l=0

l∑

m=−l

e−l(l+2)tZm
nl(u)Z

m
nl(v), (6)

where we have taken g(λj , t) = e−l(l+2)t. Eq. (6) is the 4D hyperspherical diffu-
sion wavelet. Substituting Eqs. (1) and (6) into Eq. (5) gives the hyperspherical
wavelet coefficients of any functional measurement f existing on the 4D hyper-
sphere:

〈Wt,u, f〉 =
N∑

n=0

n∑

l=0

l∑

m=−l

Cnlme
−l(l+2)tZm

nl(u) (7)

Eq. (7) is equivalent to Eq. (3), i.e. the hyperspherical wavelet coefficients are
simply the functional measurement at different smoothing scales, which indicates
that isotropic heat diffusion smoothing and the diffusion wavelet transform are
identical operations on the hypersphere. It should be noted that a similar 3D
analysis will result in the SPHARM wavelet.

3 Application

Numerical Implementation
The numerical implementation follows that of the HyperSPHARM algorithm.
The task at hand is to estimate the HSH coefficients Cnlm in Eq. (1) for the
functional measurement f = (x1, x2, x3), where (x1, x2, x3) are the surface coor-
dinates of the 3D manifold M.

Suppose the manifold M comprisesM mesh vertices, and let Ωj = (βj , θj , φj)
denote the hyperspherical angles at the j-th mesh vertex. Denote xi as the M
x 1 vector representing each xi’s M vertices, Ci the Q x 1 vector of unknown
expansion coefficients Ci

nlm for each xi, and A the M x Q matrix constructed
with the HSH basis

A =

⎛

⎜⎝
Z0
00(Ω1) Z0

10(Ω1) Z−1
11 (Ω1) Z0

11(Ω1) · · · ZN
NN (Ω1)

...
...

...
...

. . .
...

Z0
00(ΩM ) Z0

10(ΩM ) Z−1
11 (ΩM ) Z0

11(ΩM ) · · · ZN
NN(ΩM )

⎞

⎟⎠ .

Thus, the general linear system representing Eq. (1) is described by xi = ACi,

and is solved via linear least squares, yielding Ĉi = (ATA)−1ATxi. Once the
HyperSPHARM coefficients have been estimated, heat diffusion smoothing is
applied to obtain the hyperspherical wavelet coefficients given by Eq. (7).
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CT Imaging Data and Preprocessng
The study consists of CT images of 70 normal subjects (33 female and 37 male),
whose age range is between 0 and 20 years. Subjects are binned into three age
categories: ages between 0 and 6 years (group I), 7 and 12 years (group II), and
13 and 19 years (group III). There are 26, 14, and 30 subjects in groups I, II, and
III, respectively. Using this dataset, we seek to address two issues: 1) whether
there are any localized hyoid bone growth spurts between these age groups and
2) whether there are any gender differences in the hyoid bone.

The hyoid bone was segmented manually. Correspondence for SPHARM and
HyperSPHARMwas established in a similarmanner as proposed in [3]. The 70 sub-
jects were first affinely aligned so to remove the overall size variablity. Since some
subjects may have a larger hyoid bone than others, it is necessary to remove the
global size differences in local shape modeling. For this reason, diffeomorphic non-
linear image registration was then performed on the affinely registered template
using Advanced NormalizationTools (ANTS) [2]. SPHARM andHyperSPHARM
are thenused to further register the surfacesvia surfaceflattening and stereographic
projection, respectively. Please note this approach avoids the surface alignment
done by coinciding the first order ellipsoid meridian and equator proposed in [5].

The HSH truncation order wasN = 1 and hypersphere radius ro = 12000. The
appropriate radius was determined by plotting the mean squared error as a func-
tion of radius and selecting the radius that minimized it (Fig. 1). The SPHARM
truncation order was L = 20. The appropriate wavelet scales t were determined
using cluster size inference. The hyperspherical and SPHARM wavelet coeffi-
cients are estimated for each vertex at scales t = [0.01 0.05] for gender and
t = 0.005 for age. The SPHARM estimation is special generate case of the
SPHARM wavelet at t = 0. Hotelling’s T 2 test was then carried out at the voxel
level at .05 significance level for group analysis with respect to age and gender.
The resulting p-value map was corrected for multiple comparisons across all ver-
tices using the false discovery rate (FDR) method.

Hotelling T 2 Statistical Results and Discussion
Only results related to gender and age groups I vs. II are presented. Figs. 2 and
3 summarize the results of our analysis using hyperspherical/SPHARM wavelets
and SPHARM, with non-red regions indicating statistical significance. All three
methods detect significant gender differences and growth spurts at several regions
along the right and left hyoid bones and near the regions that connect the discon-
nected hyoid bones. SPHARM, however, detects no significant gender and age ef-
fects in the middle hyoid bone, unlike the hyperspherical wavelet. The SPHARM
wavelet does detect significant gender differences in a few areas along the middle
hyoid bone, but no age effects. For both age and gender, the hypersphericalwavelet
had the largest number of significant vertices, followed by SPHARM wavelet, and
then SPHARM. For gender, the hyperspherical wavelet has a total of 8575 statisti-
cally significant vertices, whereas SPHARMwavelet has 6384 and SPHARM 2928.
For age, the hyperspherical wavelet detects 5394 statistically significant vertices,
followed by SPHARM wavelet with 5330, and SPHARM with 4854.
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SPHARM: Gender

SPHARM Wavelet: Gender

Hyperspherical Wavelet: Gender

Fig. 2. Testing for gender differences. p-values after FDR correction (i.e. q-value),
projected back onto hyoid bone template. For hyperspherical wavelet, q-value < 0.028
corresponds to significance; for SPHARMwavelet, q-value< 0.029 (LH),< 0.005 (MH),
and < 0.019 (RH); for SPHARM, q-value < 0.011 (LH) and < 0.014 (RH).
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SPHARM: Age Groups I & II

SPHARM Wavelet: Age Groups I & II

Hyperspherical Wavelet: Age Groups I & II

Fig. 3. Testing for age effects. p-values after FDR correction (i.e. q-value), projected
back onto hyoid bone template. For hyperspherical wavelet, q-value< 0.014 corresponds
to significance; for SPHARM wavelet, q-value < 0.028 (LH) and < 0.016 (RH); for
SPHARM, q-value < 0.026 (LH) and < 0.014 (RH).
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The hyperspherical diffusion wavelet’s outperformance of SPHARM is due to
the wavelet being a local basis whereas SPHARM employs a global basis. The
wavelet’s inherent localization power, therefore, enables it to infer localized shape
variations much better than globally-based methods like SPHARM. SPHARM
wavelet’s outperformance of SPHARM is for the same reason.

4 Conclusion

In this paper, we have introduced the hyperspherical diffusion wavelet, which
allows for the statistical detection of highly localized variations in anatomical
morphology. It was used in the first ever developmental study on the hyoid bone,
and subsequent statistical testing on the wavelet coefficients revealed localized
gender differences and growth spurts in the hyoid bone. We also showed that our
framework is more sensitive in signal detection, outperforming both SPHARM
wavelet and SPHARM in the discernment of group-wise differences.
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